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Effective Potential for Scalar QED in (2 + 1) 
Dimensions 
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We calculate the renormalized one loop approximation to the effective potential 
for scalar electrodynamics in (2 + 1 ) dimensions. We study its gauge dependence 
and show that it satisfies the renormalization group equation since it is independent 
on any renormaiization scale. This relies on the fact that we do not need to 
improve the effective potential in (2 + 1) dimensions. 

I. INTRODUCTION 

In general the study of lower dimensional situations is motivated by the 
fact that in the simpler setting we can learn useful things which can be 
applied to four-dimensional problems. Moreover, there are possible physical 
applications: The high-temperature behavior of four-dimensional field theo- 
ries is governed by their three-dimensional analysis (Gross et  al., 1981; Dese 
et  al.,  1982). Interesting condensed matter phenomena such as the quantum 
Hall effect and high-T~ supercondictivity appear to involve planer gauge- 
theoretic dynamics. Introducing anyons in (2 + 1)-dimensional physics cre- 
ated a new point of contact between solid-state physics and particle physics. 
Anyonic superco'ndictivity presents a candidate for the explanation of the 
superconditing properties observed in certain materials at high temperature. 

The effective potential for a field theory as introduced by Euler, Heisen- 
berg, and Schwinger is very useful in the study of spontaneous symmetry 
breaking. Unfortunately, an exact computation of the effective potential 
involves an infinite number of Feynman diagrams (Coleman and Wienberg, 
1973), This is a difficult task, especially when several interactions are present. 
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So we are only able to calculate the effective potential approximated to a 
few-loop approximation. 

The expansion of the effective potential in four dimensions contains a 
renormalization scale which is arbitrary. The effect of its change can be 
absorbed into the changes in the coupling constant and the field. This problem 
arises from the fact that the effective potential does not satisfy the renormaliza- 
tion group equation. The renormalization group equation for the effective 
potential states that 

d V  
- 0  

d M  

Then 

M 3 0 3 ]  
+ 13(g , )  - v = o 

where f3 = M dgi/dM and ~ is the anomalous dimension, 3, = -dd~/dM.  
Many procedures to improve the effective potential so as to satisfy the 
renormalization group equation have been suggested (Mckeon, 1984; Kasten- 
ing, 1991; Bando et al., 1992). 

In this note, we calculate the renormalized one-loop approximation to 
the effective potential for scalar electrodynamics in (2 + 1) dimensions. This 
expression of the effective potential is required for studying the spontaneous 
symmetry breaking in (2 + 1) dimensions. 

We study the gauge dependence of the effective potential; this depen- 
dence presents a difficulty in using the effective potential, since it may create 
false minima. We show explicitly this gauge dependence of the effective 
potential in (2 + 1) dimensions. 

We note that the effective potential is independent on any renormalization 
scale, in contrast with the effective potential in four dimensions, where V(dp) 

~b4[ln(dp2/M2) - �89 and M is the renormalization scale. So in (2 + 1) 
dimensions we do not need to introduce an improvement to the effective 
potential, since it already satisfies the renormalization group equation. 

2. EFFECTIVE POTENTIAL FOR SCALAR QED IN 2 + 1 
DIMENSIONS 

In scalar massless quantum electrodynamics, 

f [ ,  ] S(d~,A) = d3x --~ F ~ F  ~ + 1(3~ + ieA~)d~l 2 - ~(Idpl2) 2 (1) 
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where A~ is the photon field with 

F~v = O~Av- O~A~ 

and qb is the complex field 

qbl + iqb2 

where dp I, qb2 are real. F(dp) is the generating function for connected, single- 
particle irreducible Green's functions of  the charged fields. In general we 
can write F(qb) as the space-time integral of an effective Lagrangian 

Leff = -V(~b) + ~ Z(cb)O~cbO~'d~ + "'" (2) 

The function V(~b), which does not contain any derivatives of  ~b, is called 
the effective potential. So for a constant field ~bc 

r(~c) = - I  d3x v(,~c) 

Then up to one loop we find 

where 

(3) 

f d3x V0(dp) = (4) 

I 1 d3x Vt(~) = - ~  In Det G(d0) 14,=~o.~t (5) 

GiJSjk = --~ 

and 

Using this formula to calculate V(qb), where in this case qb = (d~l, 62, A~), 
we find that 

h 
V0(tb) = -S(qb, 0) = ~ (I qbl2) 2 (6) 

In order to evaluate Vl(qb), we need to calculate G(qb), which is given by 

(G-l) i j  = -S . i j  
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so we can write the Lagrangian of equation (1) in the form 

where 

G_,(k ,=( lc2- -}h l~ l  2 eko.dP ) 
-edo§ go.,,(lfl - e21qbl 2) + (1/a - 1)k~k,, (7) 

We evaluate the determinant of  the G-~(k) matrix (which is a covariant 
quantity) by assuming a simple frame such as kl = k2 = 0, ko ~ 0. In this 
frame we have/fl = ko 2 and the value of the determinant in this case is given by 

det G-I(k) = 

\ 0 / k ~  - Xl+d012 ekod0 ( ~ _  0 0 ) 
det | - e ~  ko ( 4  - e21dp 12) + 1)4 0 0 

| 0 0 ~ - e21d~, 2 0 (8) 
0 0 ~ - e21qbl 2 

so that 

det G-~(k) = 

[( ~ ) ( ( ( 1 ) )  ] (k~ - e21d~12) 2 k~ - ~ Id~12 k~ - e21~bl 2 + - I ~ + e21d~12k~ 

As we mentioned, det G-~(k) is invariant. Then in general we have 

det G-~(k) = 

(( ~ )[ (~ /] t (k 2 -  e21d012) 2 k 2 - ~ l q ~ l  2 k 2 -  e21q~l 2 +  - 1 /d + e21~12k 2 (9) 

where ~ is the gauge fixing. The quantity r, was kept here in order to 
investigate how the effective potential depends on the gauge fixing. Using 
(5), we get 

Vt(~) = ~ 21n(k 2-e21qbl 2) 

[( ~ /[ (l /] + I n  k 2 - ~ 1 ~ 1 2  (k 2-e21d012) + - 1 k 2 -e2k21d0 (10) 
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Equation (10) can be written as 

I d3k [ 2) ( 1  - A )  ln(k 2 B)] Vt(~b) = ~ 2 ln(k 2 - e21d?l + In k 2 + - 

where 

h l h  AB = -~ e21cbl 4 and a + B = -~-~ ld?l 2 

The integral is ultraviolet divergent. To evaluate it, we cut off the integral 
at k 2 = A 2, and we find 

1 12)3/2 a,v/--~3/2 -1- B312 ] Vt(~b) =~-~ [2(e21d~ + ( l l )  

where we ignored any term that vanishes as A goes to infinity and we used 
a usual mass renormalization counterterm, which is determined by imposing 
the definition of the renormalized mass. Having renormalized the mass to 
vanish (i.e., d2V/d(~ 2 = 0), we can make use of the determination of this 
counterterm which canceled the divergent part in V~. 

From equation (11) we note that V(~b) does not depend on any renormal- 
ization scale, in contrast with the effective potential in four dimensions. So 
the effective potential of the scalar QED in (2 + l) dimensions automatically 
satisfies the renormalization group equation. 

We conclude that in the current study, no further improvement is needed 
to the effective potential in (2 + l) dimensions. 
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